
Detecting Credit Card Fraud using Periodic Features

Alejandro Correa Bahnsen, Djamila Aouada, Aleksandar Stojanovic and Björn Ottersten
Interdisciplinary Centre for Security, Reliability and Trust

University of Luxembourg, Luxembourg
Email: al.bahnsen@gmail.com, djamila.aouada@uni.lu, aleksandar.stojanovic@rwth-aachen.de, bjorn.ottersten@uni.lu

Abstract—When constructing a credit card fraud detection
model, it is very important to extract the right features from
transactional data. This is usually done by aggregating the
transactions in order to observe the spending behavioral patterns
of the customers. In this paper we propose to create a new set of
features based on analyzing the periodic behavior of the time of
a transaction using the von Mises distribution. Using a real credit
card fraud dataset provided by a large European card processing
company, we compare state-of-the-art credit card fraud detection
models, and evaluate how the different sets of features have
an impact on the results. By including the proposed periodic
features into the methods, the results show an average increase
in savings of 13%. The aforementioned card processing company
is currently incorporating the methodology proposed in this paper
into their fraud detection system.

Keywords—Fraud detection; von Mises distribution; Cost-
sensitive learning

I. INTRODUCTION

Credit card fraud has been a growing problem worldwide.
During 2012 the total level of fraud reached 1.33 billion
Euros in the Single Euro Payments Area, which represents
an increase of 14.8% compared with 2011 [1]. Moreover,
payments across non traditional channels (mobile, internet,
...) accounted for 60% of the fraud, whereas it was 46%
in 2008. This opens new challenges as new fraud patterns
emerge, and current fraud detection systems are less successful
in preventing these frauds. Furthermore, fraudsters constantly
change their strategies to avoid being detected, something that
makes traditional fraud detection tools, such as expert rules,
inadequate [2].

The use of machine learning in fraud detection has been an
interesting topic in recent years. Different detection systems
that are based on machine learning techniques have been
successfully used for this problem, in particular: neural net-
works [3], Bayesian learning [4], artificial immune systems
[5], hybrid models [6], support vector machines [7], peer
group analysis [8], online learning [9] and social network
analysis [2].

When constructing a credit card fraud detection model, it
is very important to use those features that allow accurate clas-
sification. Typical models only use raw transactional features,
such as time, amount, place of the transaction. However, these
approaches do not take into account the spending behavior
of the customer, which is expected to help discover fraud
patterns [5]. A standard way to include these behavioral
spending patterns is proposed in [10], where Whitrow et al.
proposed a transaction aggregation strategy in order to take into
account a customer spending behavior. The computation of the
aggregated features consists in grouping the transactions made

during the last given number of hours, first by card or account
number, then by transaction type, merchant group, country or
other, followed by calculating the number of transactions or
the total amount spent on those transactions.

In this paper, we propose a new set of features based on
analyzing the time of a transaction. The logic behind it is that
a customer is expected to make transactions at similar hours.
We, hence, propose a new method for creating features based
on the periodic behavior of a transaction time, using the von
Mises distribution [11]. In particular, these new time features
should estimate if the time of a new transaction is within the
confidence interval of the previous transaction time.

Furthermore, using a real credit card fraud dataset provided
by a large European card processing company, we compare the
different sets of features (raw, aggregated and periodic), using
two kinds of classification algorithms; cost-insensitive [12] and
example-dependent cost-sensitive [13]. The results show an
average increase in the savings of 13% by using the proposed
periodic features. Additionally, the outcome of this paper is
being currently used to implement a state-of-the-art fraud
detection system, that will help to combat fraud once the
implementation stage is finished.

The remainder of the paper is organized as follows. In
Section 2, we discuss current approaches to create the fea-
tures used in fraud detection models. Then, in Section 3, we
present our proposed methodology to create periodic features.
Afterwards, the experimental setup and the results are given in
Sections 4 and 5. Finally, conclusions and discussions of the
paper are presented in Section 6.

II. TRANSACTION AGGREGATION STRATEGIES

When constructing a credit card fraud detection algorithm,
the initial set of features (raw features) include information
regarding individual transactions. It is observed throughout the
literature, that regardless of the study, the set of raw features
is quite similar. This is because the data collected during a
credit card transaction must comply with international financial
reporting standards. In TABLE I, the typical credit card fraud
detection raw features are summarized.

Several studies use only the raw features in carrying their
analysis [3], [4]. However, as noted in [14], a single transaction
information is not sufficient to detect a fraudulent transaction,
since using only the raw features leaves behind important
information such as the consumer spending behavior, which
is usually used by commercial fraud detection systems [10].

To deal with this, in [5], a new set of features were
proposed such that the information of the last transaction made
with the same credit card is also used to make a prediction.

TABLE I. SUMMARY OF TYPICAL RAW CREDIT CARD FRAUD
DETECTION FEATURES

Attribute name Description
Transaction ID Transaction identification number
Time Date and time of the transaction
Account number Identification number of the customer
Card number Identification of the credit card
Transaction type ie. Internet, ATM, POS, ...
Entry mode ie. Chip and pin, magnetic stripe, ...
Amount Amount of the transaction in Euros
Merchant code Identification of the merchant type
Merchant group Merchant group identification
Country Country of trx
Country 2 Country of residence
Type of card ie. Visa debit, Mastercard, American Express...
Gender Gender of the card holder
Age Card holder age
Bank Issuer bank of the card

The objective, is to be able to detect very dissimilar continuous
transactions within the purchases of a customer. The new set
of features include: time since the last transaction, previous
amount of the transaction, previous country of the transaction.
Nevertheless, these features do not take into account consumer
behavior other than the last transaction made by a client, this
leads to having an incomplete profile of customers.

A more compressive way to take into account a customer
spending behavior is to derive some features using a trans-
action aggregation strategy. This methodology was initially
proposed in [10]. The derivation of the aggregation features
consists in grouping the transactions made during the last given
number of hours, first by card or account number, then by
transaction type, merchant group, country or other, followed
by calculating the number of transactions or the total amount
spent on those transactions. This methodology has been used
by a number of studies [7]–[9], [15]–[18].

When aggregating a customer transactions, there is an
important question on how much to accumulate, in the sense
that the marginal value of new information may diminish as
time passes. [10] discuss that aggregating 101 transactions
is not likely to be more informative than aggregating 100
transactions. Indeed, when time passes, information lose their
value, in the sense that a customer spending patterns are
not expected to remain constant over the years. In particular,
Whitrow et al. define a fixed time frame to be 24, 60 or 168
hours.

Let S be a set of N transactions, i.e., N = |S|,
where each transaction is represented by the feature vector
xi = [x1i , x

2
i , ..., x

k
i], where k is the number of features, and

labelled using the class label yi ∈ {0, 1}. Then, the process
of aggregating features consists in selecting those transactions
that were made in the previous tp hours, for each transaction
i in the dataset S,

Sagg ≡ TRXagg(S, i, tp) =
{
xamtl

∣∣∣∣ (xidl = xidi
)
∧

(
hours(xtimei , xtimel) < tp

)}N
l=1

, (1)

where TRXagg is a function that creates a subset of S
associated with a transaction i with respect to the time frame
tp, N = |S|, | · | being the cardinality of a set, xtimei is the
time of transaction i, xamti is the amount of transaction i,
xidi the customer identification number of transaction i, and

TABLE II. EXAMPLE CALCULATION OF AGGREGATED FEATURES.
WHERE, xa1

i IS THE NUMBER OF TRANSACTIONS IN THE LAST 24 HOURS
AND xa2

i IS THE SUM OF THE TRANSACTIONS AMOUNTS IN THE SAME
TIME PERIOD.

Raw features Agg. features
TrxId CardId Time Type Country Amt. xa1i xa2i

1 1 01/01 18:20 POS Lux 250 0 0
2 1 01/01 20:35 POS Lux 400 1 250
3 1 01/01 22:30 ATM Lux 250 2 650
4 1 02/01 00:50 POS Ger 50 3 900
5 1 02/01 19:18 POS Ger 100 3 700
6 1 02/01 23:45 POS Ger 150 2 150
7 1 03/01 06:00 POS Lux 10 3 400

hours(t1, t2) is a function that calculates the number of hours
between the times t1 and t2. Afterwards the feature number
of transactions and amount of transactions in the last tp hours
are calculated as:

xa1i = |Sagg|, (2)

and
xa2i =

∑
xamt∈Sagg

xamt, (3)

respectively.

To further clarify how the aggregated features are calcu-
lated we show an example. Consider a set of transactions made
by a client between the first and third of January of 2015, as
shown in TABLE II. Then we estimate the aggregated features
(xa1i and xa2i) by setting tp = 24 hours. Moreover, the total
number of aggregated features can grow quite quickly, as tp
can have several values, and the combination of combination
criteria can be quite large as well. In [17], we used a total
of 280 aggregated features. In particular we set the different
values of tp to: 1, 3, 6, 12, 18, 24, 72 and 168 hours. Then
calculate the aggregated features using (1) with the following
grouping criteria: country, type of transaction, entry mode,
merchant code and merchant group.

III. PROPOSED PERIODIC FEATURES

When using the aggregated features, there is still some
information that is not completely captured by those features.
In particular we are interested in analyzing the time of the
transaction. The logic behind this, is that a customer is
expected to make transactions at similar hours. The issue when
dealing with the time of the transaction, specifically, when
analyzing a feature such as the mean of transactions time, is
that it is easy to make the mistake of using the arithmetic
mean. Indeed, the arithmetic mean is not a correct way to
average time because, as shown in Fig. 1, it does not take into
account the periodic behavior of the time feature. For example,
the arithmetic mean of transaction time of four transactions
made at 2:00, 3:00, 22:00 and 23:00 is 12:30, which is counter
intuitive since no transaction was made close to that time.

We propose to overcome this limitation by modeling the
time of the transaction as a periodic variable, in particular using
the von Mises distribution [11]. The von Mises distribution,
also known as the periodic normal distribution, is a distribution
of a wrapped normal distributed variable across a circle.
The von Mises probability distribution of a set of examples

Fig. 1. Analysis of the time of a transaction using a 24 hour clock. The
arithmetic mean of the transactions time (dashed line) do not accurately
represents the actual times distribution.

D = {t1, t2, · · · , tN} for a given angle tx is given by

f (tx|µvM , σvM) =
e

1
σvM

cos(tx−µvM)

2πI0

(
1

σvM

) (4)

where I0(κ) is the modified Bessel function of order 0, and
µvM and σvM are the periodic mean and periodic standard de-
viation, respectively. In Appendix A we present the calculation
of µvM and σvM .

In particular, we are interested in calculating a confidence
interval (CI) for the time of a transaction. For doing that,
initially we select a set of transactions made by the same client
in the last tp hours (Sper) as:

Sper ≡ TRXvM (S, i, tp) =
{
xtimel

∣∣∣∣ (xidl = xidi
)
∧

(
hours(xtimei , xtimel) < tp

)}N
l=1

. (5)

Afterwards, the probability distribution function of the time of
the set of transactions is calculated as:

xtimei ∼ vonmises
(
µvM (Sper),

1

σvM (Sper)

)
. (6)

In Fig. 2, the von Mises distribution calculation for the
earlier example is shown. It is observed that the arithmetic
mean is different from the periodic mean, the latter being a
more realistic representation of the actual transactional times.
Then, using the estimated distribution, a new set of features
can be extracted, i.e., a binary feature (xp1i) if a new transaction
time is within the confidence interval range with probability α.
An example is presented in Fig. 3. Furthermore, other features
can be calculated, as the confidence interval range can be
calculated for several values of α, and also the time period
can have an arbitrary size.

Fig. 2. Fitted von Mises distribution including the periodic mean (dashed
line) and the probability distribution (purple area).

Fig. 3. Expected time of a transaction (green area). Using the confidence
interval, a transaction can be flag normal or suspicious, depending whether or
not the time of the transaction is within the confidence interval.

Additionally, following the same example presented in
TABLE II, we calculate a feature xp1i , as a binary feature that
takes the value of one if the current time of the transaction
is within the confidence interval of the time of the previous
transactions with a confidence of α = 0.9. The example is
shown in TABLE III, where the arithmetic and periodic means
differ, as for the last transaction. Moreover, the new feature
helps to get a better understanding of when a customer is
expected to make transactions.

Finally, when calculating the periodic features, it is impor-
tant to use longer time frames tp, since if the distribution is
calculated using only a couple of transactions it may not be
as relevant of a customer behavior patterns, compared against
using a full year of transactions. Evidently, if tc is less than 24
hours, any transaction made afterwards will not be expected

TABLE III. EXAMPLE CALCULATION OF PERIODIC FEATURES. WHERE
xp1
i IS A BINARY FEATURE THAT INFORMS WHENEVER A TRANSACTION IS
BEING MADE WITHIN THE CONFIDENCE INTERVAL OF THE TIME OF THE

TRANSACTIONS.

Raw features Arithmetic Periodic features
Id Time mean mean Confidence interval xp1

i
1 01/01/15 18:20 — — — —
2 01/01/15 20:35 — — — —
3 01/01/15 22:30 19:27 19:27 15:45 - 23:10 True
4 02/01/15 00:50 20:28 20:28 17:54 - 23:03 False
5 02/01/15 19:18 16:34 22:34 18:51 - 00:17 True
6 02/01/15 23:45 16:19 21:07 15:21 - 02:52 True
7 03/01/15 06:00 18:33 22:33 17:19 - 01:46 False

to be within the distribution of previous transactional times.
To avoid this, we recommend using at least the previous 7
days of transactional information, therefore, having a better
understanding of its behavioral patterns.

IV. EXPERIMENTAL SETUP

In this section, first the dataset used for the experiments
is described. Second, the evaluation measure used to compare
the algorithms is shown. Lastly, the algorithms used in this
paper are briefly explained.

A. Database

For this paper we used a dataset provided by a large
European card processing company. The dataset consists of
fraudulent and legitimate transactions made with credit and
debit cards between January 2012 and June 2013. The total
dataset contains 120,000,000 individual transactions, each one
with 27 attributes, including a fraud label indicating whenever
a transaction is identified as fraud. This label was created
internally in the card processing company, and can be regarded
as highly accurate. In the dataset only 40,000 transactions were
labeled as fraud, leading to a fraud ratio of 0.025%.

Furthermore, using the methodologies for feature extraction
described in Section II, we estimate a total of 293 features.
Also, for the experiments, a smaller subset of transactions
with a higher fraud ratio, corresponding to transactions made
with magnetic stripe, is selected. This dataset contains 236,735
transactions and a fraud ratio of 1.50%. In this dataset, the total
financial losses due to fraud are 895,154 Euros. This dataset
was selected because it is the one where most frauds occur.

The total dataset is divided into 3 subsets: training, vali-
dation and testing. Each one containing 50%, 25% and 25%
of the transactions respectively. TABLE IV summarizes the
different datasets.

B. Evaluation measure

When evaluating a credit card fraud detection model,
typically a standard binary classification measure, such as mis-
classification error, receiver operating characteristic (ROC),
Kolmogorov-Smirnov (KS) or F1Score statistics, is used [9],
[19], [20]. However, these measures may not be the most
appropriate evaluation criteria when evaluating fraud detection
models, because they tacitly assume that misclassification
errors carry the same cost, similarly with the correct classi-
fied transactions. This assumption does not hold in practice,
when wrongly predicting a fraudulent transaction as legitimate

TABLE IV. SUMMARY OF THE DATASETS

Set Transactions %Frauds Cost
Total 236,735 1.50 895,154
Training 94,599 1.51 358,078
Validation 70,910 1.53 274,910
Testing 71,226 1.45 262,167

TABLE V. CREDIT CARD FRAUD COST MATRIX [17]

Actual Positive Actual Negative
yi = 1 yi = 0

Predicted Positive
CTPi = Ca CFPi = Caci = 1

Predicted Negative
CFNi = Amti CTNi = 0

ci = 0

carries a significantly different financial cost than the inverse
case.

In order to take into account the different costs of fraud
detection during the evaluation of an algorithm, in [17], we
proposed a cost matrix [13] that takes into account the actual
example-dependent financial costs. In TABLE V, the cost ma-
trix is presented, where the prediction of the algorithm ci is a
function of the k features of transaction i, xi = [x1i , x

2
i , ..., x

k
i],

yi is the true class of the transaction i, and the cost asso-
ciated with two types of correct classification, namely, true
positives CTPi , and true negatives CTNi ; and the two types
of misclassification errors, namely, false positives CFPi , and
false negatives CFNi , are presented. Moreover, our cost matrix
defines the cost of a false negative to be the amount of the
transaction Amti, and the costs of false positive and true
positive to be the administrative cost Ca related to analyzing
the transaction and contacting the card holder.

Afterwards, using the example-dependent cost matrix, a
cost measure is calculated taking into account the actual costs
of each transaction i. Let S be a set of N transactions,
i.e., N = |S|, where each transaction is represented by the
augmented feature vector x∗i = [xi, CTPi , CFPi , CFNi , CTNi],
and labelled using the class label yi ∈ {0, 1}. A classifier f
which generates the predicted label ci for each transaction i,
is trained using the set S. Then the cost of using f on S is
calculated by

Cost(f(S)) =
N∑
i=1

yi(1− ci)Amti + ciCa. (7)

Lastly, in order to have a measure that is easy to interpret,
we used the financial savings as we defined in [21]. In
particular, the savings measure we proposed a savings measure
that compare the cost of an algorithm versus the cost of using
no algorithm at all. In the case of credit card fraud the cost of
using no algorithm is equal to the sum of the amounts of the
fraudulent transactions

∑N
i=1 yiAmti. Then, the savings are

calculated as:

Savings(f(S)) =
∑N
i=1 yiciAmti − ciCa∑N

i=1 yiAmti
. (8)

In other words, the sum of the amounts of the corrected
predicted fraudulent transactions minus the administrative cost
incurred in detecting them, divided by the sum of the amounts
of the fraudulent transactions.

Fig. 4. Comparison of the different algorithms, trained with only the raw
features (raw), only the aggregated features (agg) and both (raw + agg).
In average, by using both the raw and the aggregated features the savings are
doubled.

C. Algorithms

For the experiments we used three cost-insensitive classifi-
cation algorithms: decision tree (DT), logistic regression (LR)
and a random forest (RF), using the implementation of Scikit-
learn [22]. Furthermore, in previous works, we have shown the
need to use algorithms that take into account the different costs
associated with fraud detection [18]. In particular we also used
three cost-sensitive algorithms, namely, Bayes minimum risk
(BMR) [17], [18], cost-sensitive logistic regression (CSLR)
[23] and cost-sensitive decision tree (CSDT) [21].

The BMR is a decision model based on quantifying
tradeoffs between various decisions using probabilities and the
costs that accompany such decisions. In the case of credit
card fraud detection, a transaction is classified as fraud if
Ca ≤ Amti · p̂i, and as legitimate if false. Where p̂i is the
estimated probability of a transaction being fraud given x∗i .
The other two cost-sensitive methods, CSLR and CSDT , are
based on introducing the example-dependent costs into a logis-
tic regression and a decision tree algorithm, by changing the
objective function of the models to one that is cost-sensitive.
For a further discussion see [23] and [21], respectively.

The implementation of the cost-sensitive algorithms is
done using the CostCla1 library. Moreover, each algorithm
was trained, using the different sets of features: raw features
(raw) as shown in TABLE I, aggregated features (agg) using
equations (2) and (3), and the periodic features (per) as
described in Section III.

V. RESULTS

First we evaluate the savings of the different algorithms
using only the raw features (raw), only the aggregated features
(agg) and both (raw+ agg). The results are shown in Fig. 4.
Note that all the algorithms generate savings, i.e., no algorithm
performs worse than using no algorithm at all. The CSDT
algorithm is the one that performs best, in particular when
using both the raw and aggregated features. When analyzing
the results using the different set of features, the aggregated
features perform better than using only the raw features in

1https://github.com/albahnsen/CostSensitiveClassification

Fig. 5. Comparison of the proposed periodic (per) set of features. It is
observed, that when the new set of features are combined with the aggregated
features, an additional increase of savings of 16.4% is made.

Fig. 6. Comparison of the average increase in savings when introducing each
set of features compared with the results of using only the raw set of features.

all the cases. This confirms the intuition of the need of using
the customer behavior patterns in order to identify fraudulent
transactions. On average, by using both the raw and the
aggregated features the savings are doubled.

Then, we evaluate the results of the periodic set of features.
In Fig. 5, the results are shown. The new set of periodic fea-
tures increase the savings by an additional 13%. The algorithm
with the highest savings is the CSDT , closely followed by
CSLR. Similarly to using the extended aggregated features,
the periodic features do not perform well when used only with
raw features. It is when combined the set of aggregated features
that an increase in savings is found.

Finally, in Fig. 6, we compare the average increase in
savings when introducing each set of features compared with
the results of using only the set of raw features. First, the
aggregated features give an average increase in savings of
201%. As previously shown, in order to improve the results,
these new features need to be combined with the aggregated
features in order to increase savings. Lastly, when combining
the previous features with the periodic features, the results
increase by 287% compared with using raw features only.

VI. CONCLUSION AND DISCUSSION

In this paper we have shown the importance of using
features that analyze the consumer behavior of individual card
holders when constructing a credit card fraud detection model.
We show that by preprocessing the data in order to include
the recent consumer behavior, the performance increases by
more than 200% compared to using only the raw transaction
information.

Moreover, we extended the current approaches to analyze
the consumer behavior by proposing a new method to analyze
the periodic behavior of the time of a transaction using the von
Mises distribution. The new proposed set of features increases
the performance by 287%.

However, because this study was done using a dataset from
a financial institution, we were not able to deeply discuss the
specific features created, and the individual impact of each
feature. Nevertheless, our framework is ample enough to be
recreated with any kind of transactional data. Furthermore,
when implementing this framework on a production fraud
detection system, questions regarding response and calculation
time of the different features should be addressed. In particular,
since there is no limit on the number of features that can be
calculated, a system may take too long to make a decision
based on the time spent recalculating the features with each
new transaction.

ACKNOWLEDGMENT

Funding for this research was provided by the
Fonds National de la Recherche, Luxembourg, grant
number AFR-PhD-5942749.

REFERENCES

[1] European Central Bank, “Third report on card fraud,” European Central
Bank, Tech. Rep., 2014.

[2] V. Van Vlasselaer, C. Bravo, O. Caelen, T. Eliassi-Rad, L. Akoglu,
M. Snoeck, and B. Baesens, “APATE: A Novel Approach for
Automated Credit Card Transaction Fraud Detection using Network-
Based Extensions,” Decision Support Systems, vol. 75, pp. 38–48,
2015.

[3] R. Brause, T. Langsdorf, and M. Hepp, “Neural data mining for credit
card fraud detection,” Proceedings 11th International Conference on
Tools with Artificial Intelligence, pp. 103–106, 1999.

[4] S. Panigrahi, A. Kundu, S. Sural, and A. Majumdar, “Credit card
fraud detection: A fusion approach using Dempster Shafer theory and
Bayesian learning,” Information Fusion, vol. 10, no. 4, pp. 354–363,
Oct. 2009.

[5] S. Bachmayer, “Artificial Immune Systems,” Artificial Immune Systems,
vol. 5132, pp. 119–131, 2008.

[6] M. Krivko, “A hybrid model for plastic card fraud detection systems,”
Expert Systems with Applications, vol. 37, no. 8, pp. 6070–6076, Aug.
2010.

[7] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data
mining for credit card fraud: A comparative study,” Decision Support
Systems, vol. 50, no. 3, pp. 602–613, Feb. 2011.

[8] D. J. Weston, D. J. Hand, N. M. Adams, C. Whitrow, and P. Juszczak,
“Plastic card fraud detection using peer group analysis,” Advances in
Data Analysis and Classification, vol. 2, no. 1, pp. 45–62, Mar. 2008.

[9] A. D. Pozzolo, O. Caelen, Y.-A. Le Borgne, S. Waterschoot, and
G. Bontempi, “Learned lessons in credit card fraud detection from a
practitioner perspective,” Expert Systems with Applications, vol. 41,
no. 10, pp. 4915–4928, Aug. 2014.

[10] C. Whitrow, D. J. Hand, P. Juszczak, D. J. Weston, and N. M. Adams,
“Transaction aggregation as a strategy for credit card fraud detection,”
Data Mining and Knowledge Discovery, vol. 18, no. 1, pp. 30–55, Jul.
2008.

[11] N. I. Fisher, Statistical Analysis of Circular Data, 1996, vol. 9.
[12] C. M. Bishop, Pattern Recognition and Machine Learning, ser.

Information science and statistics. Springer, 2006, vol. 4, no. 4.
[13] C. Elkan, “The Foundations of Cost-Sensitive Learning,” in Seventeenth

International Joint Conference on Artificial Intelligence, 2001, pp.
973–978.

[14] R. Bolton and D. J. Hand, “Unsupervised profiling methods for fraud
detection,” in Credit Scoring and Credit Control VII, 2001.

[15] D. Tasoulis and N. Adams, “Mining information from plastic card
transaction streams,” in Proceedings in 18th International Conference
on Computational Statistics, 2008.

[16] S. Jha, M. Guillen, and J. Christopher Westland, “Employing
transaction aggregation strategy to detect credit card fraud,” Expert
Systems with Applications, vol. 39, no. 16, pp. 12 650–12 657, 2012.

[17] A. Correa Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “Cost
Sensitive Credit Card Fraud Detection Using Bayes Minimum Risk,”
in 2013 12th International Conference on Machine Learning and
Applications. Miami, USA: IEEE, Dec. 2013, pp. 333–338.

[18] ——, “Improving Credit Card Fraud Detection with Calibrated Proba-
bilities,” in Proceedings of the fourteenth SIAM International Confer-
ence on Data Mining, Philadelphia, USA, 2014, pp. 677 – 685.

[19] R. J. Bolton, D. J. Hand, F. Provost, and L. Breiman, “Statistical
Fraud Detection: A Review,” Statistical Science, vol. 17, no. 3, pp.
235–255, 2002.

[20] D. J. Hand, C. Whitrow, N. M. Adams, P. Juszczak, and D. J. Weston,
“Performance criteria for plastic card fraud detection tools,” Journal
of the Operational Research Society, vol. 59, no. 7, pp. 956–962, May
2007.

[21] A. Correa Bahnsen, D. Aouada, and B. Ottersten, “Example-
Dependent Cost-Sensitive Decision Trees,” Expert Systems with
Applications, vol. 42, no. 19, pp. 6609–6619, 2015.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[23] A. Correa Bahnsen, D. Aouada, and B. Ottersten, “Example-Dependent
Cost-Sensitive Logistic Regression for Credit Scoring,” in 2014 13th
International Conference on Machine Learning and Applications. De-
troit, USA: IEEE, 2014, pp. 263–269.

APPENDIX

The von Mises distribution, also known as the periodic
normal distribution, is a distribution of a wrapped normal
distributed variable across a circle [11]. The von Mises distri-
bution of a set of examples D = {t1, t2, · · · , tN} is defined as
D ∼ vonmises (µvM , 1/σvM) , where µvM and σvM are the
periodic mean and periodic standard deviation, respectively,
and are calculated as follows [12]

µvM (D) = 2 tan−1

 φ(√
ψ2 + φ2 + φ

)
 , (9)

and

σvM (D) =

√√√√ln

(
1(

1
N φ
)2

+
(

1
Nψ
)2
)
, (10)

where φ =
∑
tj∈D

sin(tj) and ψ =
∑
tj∈D

cos(tj).

